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§1.  Algebraic Integers

§1. 1.  Algebraic Numbers and Algebraic Integers

Minimal Polynomial For 𝛼 ∈ ℂ 𝛼’s minimal polynomial 𝑃 over ℚ is such that:
1. The leading coefficient of 𝑃 is 1.
2. 𝑃(𝛼) = 0.
3. deg 𝑃 is minimal.

We refer to deg 𝑃 as the degree of 𝛼.

Example :
• √2 has the minimal polynomial 𝑥2 − 2.
• 𝑖 has the minimal polynomial 𝑥2 + 1.

☂  Theorem 1.1.1 : 𝐴(𝛼) = 0 then there exists Q(x) such that 𝐴(𝑥) ≡ 𝑄(𝑥)𝑃(𝑥).

Proof :  For the sake of contradiction assume otherwise

By polynomial division 𝐴(𝑥) ≡ 𝑃(𝑥)𝑄(𝑥) + 𝑅(𝑥) where deg 𝑅(𝑥) < deg 𝑃(𝑥) and
𝑅(𝑥) ≢ 0. Then 0 = 𝐴(𝛼) = 0𝑄(𝛼) + 𝑅(𝛼) = 𝑅(𝛼). 𝑅(𝛼) = 0, this contradicts the mini6
mality of deg 𝑃(𝑥). ∎

🧡  Corollary 1.1.1.1 : P(x) is the minimal polynomial if and only if it is irreducible.

Algebraic Number An algebraic number is any 𝛼 ∈ ℂ which is the root of some
polynomial with coefficients in ℚ. The set of algebraic numbers is denoted ℚ

Algebraic Integer Consider an algebraic number 𝛼 and its minimal polynomial 𝑃. If
it turns out the coefficients of 𝑃 are integers, then we say that 𝛼 is an algebraic
integer.

☂  Theorem 1.1.2 (Gauss's Lemma):  A polynomial is irreducible over the integer
if and only if it is irreducible over the rational.

A result of this is that to check that a number is an algebraic integer, it is sufficient
to find a monic polynomial with it as a root with integer coefficient.

Rational Integer the elements of ℤ are referred to as rational integers.

Example :

4, 𝑖, 3√2, √2 + √3
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are all algebraic integers because they are the roots of 𝑥 − 4, 𝑥2 + 1, 𝑥3 − 2 and
(𝑥2 − 5)2 − 24.

The number 1
2  has minimal polynomial 𝑥 − 1

2 , so it’s an algebraic number but
not ans algebraic integer. It also implies that no monic integer polynomial has
1
2  as a root.

🟪  Lemma 1.1.3 (Rational algebraic integers are rational integers) :  An algebraic
integer is rational if and and only if it is a rational integer. ℤ ∩ ℚ = ℤ

Proof :  For all 𝑛 ∈ ℤ, 𝑛 is the root of 𝑥 − 𝑛. Conversely the minimal polynomial
of 𝑝

𝑞  is 𝑥 − 𝑝
𝑞  and so 𝑝

𝑞  is an algebraic integer only if 𝑝
𝑞  is an integer. ∎

🟪  Lemma 1.1.4 :  The algebraic integers ℤ forms a ring. The algebraic numbers
ℚ forms a field

Proof : ∎

§1. 2.  Number Fields

Number Field A number field 𝐾  is field containing ℚ as a subfield which is a finite-
dimensional ℚ vector space. The degree of 𝐾  is its dimension.

Example :  Consider the field 𝐾 = 𝑄(√2) = {𝑎 + 𝑏√2 | 𝑎, 𝑏 ∈ ℚ}. This is a field
extension of ℚ, and has degree 2 (the basis being 1 and √2).

Note that (□) over [□] means that it is a field of fractions. This difference doesn’t
matter though because they are the same thing in this context.

☂  Theorem 1.2.1 (Artin's primitive element theorem):  Every number field 𝐾  is
isomorphic to ℚ(𝛼) for some algebraic number 𝛼.
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§1. 3.  Problems

Exercise I : Find a polynomial with integer coefficients which has √2 + 3√3 as a
root

Solution :  Let 𝑥 = √2 + 3√3. It must be the case that (𝑥 − √2)
3

= 3. Expanding this we get
that 𝑥3 − 3√2𝑥2 + 6𝑥 − 2√2 = 3. Hence 𝑥3 + 6𝑥 − 3 = √2(3𝑥2 + 2). Squaring both sides:

(𝑥3 + 6𝑥 − 3)2 = 2(3𝑥2 + 2)2

(𝑥3 + 6𝑥 − 3)2 − 2(3𝑥2 + 2)2 = 0

𝑥6 − 6𝑥4 − 6𝑥3 + 12𝑥2 − 36𝑥 + 1 = 0

Exercise II (Brazil 2006) :  Let 𝑝 be an irreducible polynomial in ℚ[𝑥] and degree
larger than 1. Prove that if 𝑝 has two roots 𝑟 and 𝑠 whose product is 1 then the
degree of 𝑝 is even.

Solution :  Since 𝑝(𝑟) = 0, 𝑝(1
𝑟 ) and 𝑝 is irreducible it must be that 𝑝 is the minimal

polynomial of 𝑝 and 1
𝑝 .

Let 𝑑 = deg. Let 𝑎 = [𝑥0]𝑝
[𝑥𝑑 ]𝑝 . Consider 𝑎𝑝(𝑥) − 𝑥𝑑𝑝( 1

𝑥 ), the leading coefficient of both
𝑝(𝑥) and 𝑥𝑑𝑝( 1

𝑥 ) is [𝑥𝑑]𝑝 and their degrees are both 𝑑. This means that there exists
a polynomial with degree less than 𝑑 for which 𝑟 is root. Since 𝑝 is the minimal
polynomial of 𝑟 that polynomial has to be 0.

Hence 𝑎𝑝(𝑥) ≡ 𝑥𝑑𝑝( 1
𝑥 ). First note that 0, 1 and −1 cannot be roots of 𝑝(𝑥) as that would

mean the polynomial 𝑝 has a factor of 𝑥, 𝑥 − 1 or 𝑥 + 1.

If 𝑞(𝑥) | 𝑝(𝑥) where 𝑞 ∈ ℂ[𝑥] then 𝑞(𝑥) | 𝑥𝑑𝑝( 1
𝑥 ). So 𝑝(𝑥) and 𝑝( 1

𝑥 ) must have the same
multi6set of roots counting multiplicity.

Consider the classes of roots 𝑎 ≡ 𝑏 if 𝑎 = 𝑏 or 𝑎 = 1
𝑏 . The number of times 𝑎 appears in

the multi6set of roots must be the same as number of time 1
𝑎  appears. So the number

of roots that is a part of each class is even. Thus the total number of roots in the
multi6set is even.

So the degree of the polynomial is even.
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Exercise III : Consider 𝑛 roots of unity 𝜀1, …, 𝜀𝑛. Assume the average 1
𝑛 (𝜀1 + … + 𝜀𝑛)

is an algebraic integer. Prove that either the average is 0 or 𝜀1 = ⋅ = 𝜀𝑛

Solution :  Consider when the sum of the roots of unity is not 0 and when not all the
roots of unity are the same, we have by the triangle inequality that if the average is
𝑥 = 1

𝑛 (𝜀1 + 𝜀2 + … + 𝜀𝑛) then |𝑥| < 1.

Now consider any conjugate of 𝑥, again it it is the sum of roots of unity and |𝑥′| is
≤ 1. Consider the minimal polynomial of 𝑥 now. The magnitude of the constant term
is equal to the magnitude of the product of all the roots. Hence the magnitude of
the constant term is less than 1. But it is not 0. So it must not be an integer. So this
cannot happen.

The sum of the roots of unity can only be 0 or a root of unity itself, which only happens
when all the roots are the same.

Exercise IV : Which rational numbers 𝑞 satisfy cos(𝑞𝜋) ∈ ℚ

Solution :

cos(
2𝑎
𝑏 𝜋) = 𝜀𝑎

𝑏 + 𝜀−𝑎
𝑏

2

2 cos(
2𝑎
𝑏 𝜋) = 𝜀𝑎

𝑏 + 𝜀−𝑎
𝑏

We have that Φ𝑏(𝜀𝑎
𝑏) = 0 If there is an integer polynomial 𝑃 such that 𝑃(𝑥 + 1

𝑥 ) = 0
where 𝑥 is 𝜀−𝑎

𝑏  then 2 cos(2 𝑎
𝑏𝜋) must be a algebraic integer.

Luckily the cyclotomic polynomial is symmetric. Which means there does exist such
a polynomial.

So 2 cos(𝑞𝜋) is an integer. But it’s also bounded between −1 and 1. This means
cos(𝑞𝜋) = −1, −1

2 , 1
2 , 1.

5 ⁄ 6



Algebraic Number Theory / The Ring of Integers

§2.  The Ring of Integers
Galois Conjugates Let 𝛼 be an algebraic number, and let 𝑃(𝑥) be its minimal polyno6

mial of degree 𝑚. Then the 𝑚 roots of 𝑃 are the galois conjugates of 𝛼.

🟪  Lemma 2.1 : An irreducible polynomial in ℚ[𝑥] has no repeated roots

Norm Let 𝑎 ∈ 𝐾  have degree 𝑚, so ℚ(𝑎) ⊆ 𝐾 , set 𝑘 = deg 𝐾
𝑛  defined as

𝑁𝐾/ℚ(𝛼) ≔ (∏ Galois conj of 𝛼)
𝑘

Trace

Tr𝐾/ℚ(𝛼) ≔ 𝑘 ⋅ (∑ Galois conj of 𝛼)

These are both “weighted averages” the add up to a weight of 𝑘. 𝑘 is actually an
integer because when we adjoin other things to ℚ(𝑎) it is a tensor product.

🟪  Lemma 2.2 :  If 𝛼 is an algebraic integer, it’s norm and trace are rational
integers.

Proof : Vieta’s Formulas ∎

☂  Theorem 2.3 :  Let 𝐾  be a field of degree 𝑛, and let 𝛼 ∈ 𝐾 . Let 𝜇𝛼 : 𝐾 → 𝐾
denote the map 𝑥 ↦ 𝛼𝑥 viewed as a linear map of ℚ6vector space. Then,

• The norm is the determinant det 𝜇𝛼

• The trace is the trace Tr 𝜇𝛼
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