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The Objects in Higher Mathematics / Fundamentals

§1.  Fundamentals

§1. 1.  Binary Operation

A binary operation • is a rule for combining two elements from a set to produce
another element in the set. It can be defined as a function • : 𝑆 × 𝑆 → 𝑆.

Common properties of binary operations:
• Associativity 𝑎 • 𝑏 = 𝑏 • 𝑎 for all 𝑎 and 𝑏.
• Closure 𝑎, 𝑏 ∈ 𝑆 ⇒ 𝑎 • 𝑏 ∈ 𝑆.
• Commutativity 𝑎 • 𝑏 = 𝑏 • 𝑎 for all 𝑎 and 𝑏.
• Identity an identity element 𝑒 is an element where 𝑒 • 𝑥 is 𝑥. for all 𝑥
• Inverse an inverse element of 𝑎 is an element such that 𝑎 • 𝑎−1 = 𝑒

§1. 2.  Binary Relationships

A binary relationship ↣ over a set 𝐴 to a set 𝐵 is a subset of the cartesian product

(↣) ⊆ 𝐴 × 𝐵

If (𝑎, 𝑏) ∈ 𝑅, we write 𝑎 ↣ 𝑏, meaning “𝑎 is related to 𝑏”.

Common properties of binary relationships:
• Reflexivity 𝑎 ↣ 𝑎 for all 𝑎
• Symmetric 𝑎 ↣ 𝑏 ⇒ 𝑏 ↣ 𝑎
• Antisymmetric 𝑎 ↣ 𝑏 and 𝑏 ↣ 𝑎 only if 𝑎 = 𝑏
• Transitive 𝑎 ↣ 𝑏 and 𝑏 ↣ 𝑐 ⇒ 𝑎 ↣ 𝑐

Special types of binary relationship:
• Partial Ordering a partial ordering is a binary relationship that is:

1. Reflexive
2. Transitive
3. Antisymmetric

• Total Ordering a total ordering is a partial ordering where for for every pair of
elements 𝑎, 𝑏 either (𝑎, 𝑏) ∈ (↣) or (𝑏, 𝑎) ∈ (↣).

• Equivalence Relationships an equivalence relationship is a binary relationship
that is:
1. Reflexive
2. Symmetric
3. Transitive

§1. 3.  Functions
• The pre-image 𝑓 −1(𝑇) is the set of all 𝑥 ∈ 𝑋  such that 𝑓 (𝑥) ∈ 𝑇 .
• The image 𝑓 (𝑆) is the set {𝑓 (𝑥) | 𝑥 ∈ 𝑆}
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§2.  Groups

§2. 1.  Groups and Subgroups

Groups A set 𝐺 is considered to be a group under the binary operation •, denoted
(𝐺, •) if together the following four conditions are met:

1. Closure 𝑎, 𝑏 ∈ 𝐺 ⇒ 𝑎 • 𝑏 ∈ 𝐺.
2. Associativity 𝑎 × (𝑏 • 𝑐) = (𝑎 • 𝑏) • 𝑐. So the order of evaluation doesn’t matter.
3. Identity There is an element 𝑒 ∈ 𝐺 such that ∀𝑥 ∈ 𝐺,𝑒 • 𝑔 = 𝑔 = 𝑔 • 𝑒.
4. Inverse For every element 𝑥 ∈ 𝐺 there is another element 𝑥−1 such that 𝑥 •

𝑥−1 = 𝑒.

Remark : A group is a monoid each of whose elements is invertible

We love groups because this is just enough information to represent any closed set
of permutations. This is formalized by☂  Theorem 2.3.1.

Order The order of a finite group 𝐺 is the total number of elements in 𝐺. The order
of an element 𝑔 ∈ 𝐺 is the smallest positive integer 𝑛 such that 𝑔𝑔 = 𝑒.

Subgroup a subgroup is a subset of (𝐺, •) which is also a group under •.

☂  Theorem 2.1.1 (Lagrange's Theorem):  if 𝐺 is a finite group and 𝐻 ⊆ 𝐺 then
the order of 𝐻 divides the order of 𝐺

Index The index of a subgroup written [𝐺 : 𝐻] is the number of left co-sets of 𝐻 in 𝐺.

Abelian Group A group (𝐺, •) is abelian if • is commutative, a group is non abelian
otherwise. This is actually very interesting see: ☂  Theorem 2.5.1

§2. 2.  Subgroup Structures: Center, Centralizer, Normalizer

Orbits The orbit of an element 𝑔 ∈ 𝐺 is the set {𝑔, 𝑔2, 𝑔3, …}.

Conjugate Elements Two elements 𝑎 and 𝑏 are conjugates of one another if 𝑥𝑎𝑥−1 =
𝑏 for some x. 𝑎 and 𝑏 are said to be in the same conjugacy class.

Center The center 𝑍(𝐺) of a group 𝐺, is the set of elements 𝑧 ∈ 𝑍(𝐺) such that for
all 𝑔 ∈ 𝐺 we have that 𝑔𝑧 = 𝑧𝑔. This center is always a normal subgroup of 𝐺. A
group is a abelian if 𝑍(𝐺) = 𝐺. The conjugacy class of every element of 𝑍(𝐺) is
itself only.

Centralizer For a subset 𝑆 of 𝐺, the centralizer of 𝑆 in 𝐺, denoted 𝐶𝐺(𝑆), is the
subgroup of 𝐺 defined by {𝑔 ∈ 𝐺 | 𝑔𝑠 = 𝑠𝑔  for all 𝑠 ∈ 𝐺}. It is the largest sub-
group where 𝑆 is a center.

Normalizer The normalizer 𝑁𝐺(𝑆) of a subgroup 𝑆 of 𝐺 is the set {𝑔 ∈ 𝐺 | 𝑔𝑆 = 𝑆𝑔}. It
is the largest subgroup of 𝐺 where 𝑆 is normal.

3 ⁄ 14



The Objects in Higher Mathematics / Groups

§2. 3.  Homomorphisms and Isomorphisms

Homomorphism Given two groups (𝐺, •) and (𝐻, ⋅), a homomorphism from 𝐺 to 𝐺 is
a function ℎ : 𝐺 → 𝐻 where ℎ(𝑎 • 𝑏) = ℎ(𝑎) ⋅ ℎ(𝑏) for all 𝑎 and 𝑏 in 𝐺.

Kernel The kernel of a group homomorphism is the preimage of the identity in the
codomain of the group homomorphism.

Isomorphism An isomorphism is a bijective homomorphism.

Automorphism An automorphism of a group is an isomorphism of the group to itself.

☂  Theorem 2.3.1 (Cayley's Theorem): Every finite group, is isomorphic to a
subset of 𝑆𝑛

§2. 4.  Normal Subgroups and Quotient Groups

Normal Subgroups A normal subgroup 𝑁 is the kernel of a group homomorphism
and it’s also a subgroup 𝑁 where 𝑔𝑁 = 𝑁𝑔 for all elements 𝑔 ∈ 𝑁. If this is the
case we write

𝑁 ⊴ 𝐺

Quotient Group Given a group 𝐺 and a normal subgroup 𝐺/𝑁, the quotient group is
the group of left cosets of 𝑁 with 𝑎𝑁 • 𝑏𝑁 = (𝑎𝑏𝑁). This is where ℤ/𝑛ℤ comes from.

§2. 5.  Direct Products

External Direct Product the external direct product of groups (𝐺, •) and (𝐻, ⋅) is 𝑆 =
𝐻 × 𝐺 with the binary operation (ℎ1, 𝑔1) ∗ (ℎ2, 𝑔2) = (ℎ1 ⋅ ℎ2, 𝑔 • 𝑔2). We have that
the order of |ℎ, 𝑔| = lcm(|ℎ|, |𝑔|). Written as 𝐺 ⊕ 𝐻, or just 𝐺 × 𝐻.

☂  Theorem 2.5.1 (Fundamental Theorem of Abelian Groups) : hi

Internal Direct Product If we have two subsets of 𝐻 and 𝐾  satisfying:
1. 𝐺 = {ℎ𝑘 | ℎ ∈ 𝐻, 𝑘 ∈ 𝐾}
2. 𝐻 ∩ 𝐾 = {𝑒}
3. ℎ𝑘 = 𝑘ℎ for all 𝑘 ∈ 𝐾  and ℎ ∈ 𝐻

Then 𝐺 is the internal direct product of 𝐻 and 𝐾 .
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§2. 6.  Group Actions

Remember that groups sort of describe permutations, and they sort of describe
symmetries. This is very useful. But to utilize this power we have to map our abstract
nonsense to some slightly less abstract nonsense.

Group Action 𝛼 : 𝐺 × 𝑋 → 𝑋  is a group action of 𝐺 acting on 𝑋 . Which satisfies:
1. 𝛼(𝑒, 𝑥) = 𝑥
2. 𝛼(𝑏, 𝛼(𝑎, 𝑥)) = 𝛼(𝑏𝑎, 𝑥)

Explained in words this is:

1. Applying no action does nothing

2. Applying an action and then another action, is the same as the action of doing
one after the other.

Remark : A good conceptual example for the set 𝑋  is the set of colourings of a
necklace or some other object.

Orbits The orbit of 𝑥 ∈ 𝑋  is the set of all configurations equivalent to 𝑥 by some
group action. Orb(𝑥) = {𝛼(𝑔, 𝑥) | 𝑔 ∈ 𝐺}

Stabilizer The stabilizers of 𝑥 ∈ 𝑋  i the set of all permutations which fix 𝑥 is the set
{𝑔 ∈ 𝐺 | 𝛼(𝑔, 𝑥) = 𝑥}. This is a subgroup of 𝑔.

☂  Theorem 2.6.1 (Orbit Stabilizer Theorem):

|Orb(𝑥)| × |Stab(𝑥)| = |𝐺|

We can use this fact to count the number of orbits

number of orbits = ∑ 1
|Orb(𝑥)| = 1

|𝐺|
∑|Stab(x)| = 1

|𝐺|
∑|Inv(𝑔)|

where Inv(𝑔) = {𝑥 ∈ 𝑋 | 𝛼(𝑔, 𝑥) = 𝑥}.

🧡  Corollary 2.6.1.1 (Burnside's Lemma):

|Classes| = 1
|𝐺|

∑|𝐼(𝑔)|
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§2. 7.  Sylow Theorems

☂  Theorem 2.7.1 (The Sylow Theorems):  Let 𝐺 be a group of order 𝑝𝑛𝑚 where
(𝑝, 𝑚) = 1. A Sylow p-group is a subgroup of order 𝑝𝑛. Let 𝑛𝑝 be the number of
Sylow 𝑝-subgroups of 𝐺. Then

1. 𝑛𝑝 ≡ (1 mod 𝑝).

2. 𝑛𝑝 ∣ 𝑚

3. Any two Sylow 𝑝-subgroups are conjugate subgroups and isomorphic.

§2. 8.  The PID structure Theorem

An abelian group 𝐺 is finitely generated if it is finitely generated as a ℤ-module. So

𝐺 = {𝑎1𝑔1 + 𝑎2𝑔2 + … + 𝑎𝑛𝑔𝑛 | 𝑎𝑖 ∈ ℤ, 𝑔𝑖 ∈ 𝐺}

☂  Theorem 2.8.1 (Fundamental Theorem of finitely generated abelian groups) :
Let 𝐺 be a finitely generated abelian group. Then there exists an integer 𝑟, prime
powers 𝑞1, …𝑞𝑚 (not necessarily distinct) such that

𝐺 ≅ ℤ⊕𝑟 ⊕ 𝑍/𝑞1ℤ ⊕ ⋅ ⊕ ℤ/𝑞𝑚ℤ
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§3.  Rings
Rings A set 𝑅 is considered to be a ring under the binary operations + and ×, written

as (𝑅, +, ×). If the following conditions are met:

1. (𝑅, +) is an abelian group with identity 0.
2. × is an associative operation with identity 1 (no inverse necessarily).
3. Multiplication distributes over addition.

A ring (𝑅, +, ×) is said to be commutative if × is commutative.

Product Rings The product ring of two rings 𝑅 and 𝑆 is is the set of elements 𝑅 × 𝑆
and where the multiplication and addition operations are done pairwise.

Polynomial Ring Given any ring we can form a polynomial ring as the set of polyno-
mials with coefficients in 𝑅.

𝑅[𝑥] = {𝑎𝑛𝑥𝑛 + … + 𝑎0}

This is pronounced 𝑅 “adjoin” 𝑥

Multivariable Polynomial Rings We can consider polynomials in 𝑛 variables with
coefficients in 𝑅 denoted 𝑅[𝑥1, 𝑥2, …, 𝑥𝑛]

Unit A unit of a ring is an element of a ring with an inverse.

§3. 1.  Homomorphisms

Homomorphism Let 𝑅 and 𝑆 be rings, a homomorphism is a map 𝜙 : 𝑅 → 𝑆 where
1. 𝜙(𝑥 + 𝑦) = 𝜙(𝑥) + 𝜙(𝑦)
2. 𝜙(𝑥 × 𝑦) = 𝜙(𝑥) × 𝜙(𝑦)
3. 𝜑(1) = 1

Isomorphism A ring isomorphism is a bijective ring homomorphism.

§3. 2.  Ideals

The ideal is the equivalent of the normal subgroup for rings.

Kernel The kernel of a ring homomorphism is the set of 𝑟 ∈ 𝑅 such that 𝜙(𝑟) = 0.

Ideal A ideal is a sub-group of the rings additive group with the following properties:
1. if 𝑎, 𝑏 ∈ 𝐼 then 𝑎 + 𝑏 ∈ 𝐼
2. if 𝑥 ∈ 𝐼 and 𝑟 ∈ 𝑅 then 𝑥 × 𝑟 ∈ 𝐼

Every kernel of a ring homomorphism is a ideal.

Remark : Ideals aren’t necessarily sub-rings

Quotient Ring Given an ideal 𝐼 the quotient ring

𝑅/𝐼 = {𝑟 + 𝐼 | 𝑟 ∈ 𝑅}

it’s the same idea as the cosets in groups. 𝑅/𝐼 forms a ring. Pronounces 𝑅 mod 𝐼 .
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This again is where we get ℤ/𝑛ℤ. It also lets us write the set of gaussian integers as
ℤ[𝑖]/ℤ[𝑖2 + 1].

§3. 3.  Generating Ideals

If an ideal contains a unit, it must contain 1 and then it must be 𝑅. So we say a proper
ideal is a ideal without any units.

I actually know what a module is, so I can just say that: An ideal is an 𝑅-module. The
ideal (𝑥1, …, 𝑥𝑛) is the submodule spanned by 𝑥1, …, 𝑥𝑛.

You can think of (𝑥) as all the multiples of (𝑥). In an ideal we can also just straight up
write (this is super powerful).

𝑥 ≡ 𝑦 (mod 𝐼)

to mean that 𝑥 − 𝑦 ∈ 𝐼 . Everything we know about modular arithmetic carries over!

§3. 4.  Principal Ideal and Principal Ideal Rings

Principal Ideal A principal ideal is an ideal generated by a single element.

A principal ideal ring is a ring where every ideal is a principal idea. This means we
can write (𝑥, 𝑦) = (𝑔) and where the shorthand notation for gcd comes from.

§3. 5.  Fields

A field is a ring where every non-zero element is a unit. Meaning that every element
has an inverse. This also means that there are no ideals besides the two trivial ones.

§3. 6.  Integral Domains

An integral domain is a ring with no zero divisors.

zero divisors 𝑎 is a zero divisor of the ring 𝑅 if 𝑎𝑏 = 0 where 𝑎 and 𝑏 are both non-
zero.

In an integral domain we have that 𝑎𝑐 = 𝑏𝑐 implies that (𝑎 − 𝑏)𝑐 = 0 and thus either
𝑎 = 𝑏 or 𝑐 = 0

PID an integral domain where all ideals are principal is called a principal ideal
domain

§3. 7.  Prime Ideals

In a prime ideal if 𝑥𝑦 ∈ 𝐼 then either 𝑥 ∈ 𝐼 or 𝑦 ∈ 𝐼

☂  Theorem 3.7.1 :  An ideal 𝐼 is prime if and only if 𝑅/𝐼 is an integral domain.

This is by definition, think about 𝑥𝑦 ≡ 0 mod 𝑝.

8 ⁄ 14



The Objects in Higher Mathematics / Rings

§3. 8.  Maximal Ideals

A proper ideal 𝐼 is maximal if it is not contained in any other proper ideal.

☂  Theorem 3.8.1 :  An ideal 𝐼 is maximal if and only if 𝑅/𝐼 is a field.

Notice maximal ideals are prime, this is because 𝑅/𝐼 is a field and hence is an integral
domain. (I still like saying there are no zero-divisors).

§3. 9.  Field of Fractions

Given an integral domain 𝑅, we define the field of fractions or fraction field Frac(𝑅)
as follows: It consists of elements 𝑎/𝑏 with the usual rules of addition and multipli-
cation.

Notice that we need it to be an integral domain because otherwise we might end up
with 0 in the denominator.

This is why we call it a integral domain. Because we can do fractions which are pretty
important.

§3. 10.  Unique Factorization Domains

A non zero non-unit of an integral domain 𝑅 is said to be irreducible if it cannot be
written as the product of two non-units.

An integral domain 𝑅 is a unique factorization domain if every non-zero non-unit
of 𝑅 can be written as the product of irreducible elements, which is unique up to
multiplication by units.

☂  Theorem 3.10.1 : Let 𝑅 be a PID, then 𝑅 is a UFD

What this means is that if every ideal of 𝑅 is principal (we can take the gcd) and it
is an integral domain meaning there are no zero-divisors. Then it is also a unique
factorization domain. 😒😒😒😒.
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The Objects in Higher Mathematics / Vector Spaces

§4.  Vector Spaces
An 𝑅-module over a commutative rings is any structure where we can add any two
numbers together and scale them by an element of 𝑅.

A vector space is a module where the ring is actually a field.

§4. 1.  Direct Sums

If 𝐴 and 𝐵 are subsets of 𝑀 which are themselves 𝑅-modules. Then 𝑀 is the direct
sum of 𝐴 and 𝐵 if every element can be written uniquely as the sum of elements from
𝐴 and 𝐵. This means then that 𝐴 and 𝐵 shouldn’t have any overlap.

If 𝑀 and 𝑁 are 𝑅 modules we define 𝑀 ⊕ 𝑁 to be the set of elements (𝑚, 𝑛) with and
scaling being term wise.

§4. 2.  Linearity Independence, Span and Basis

Linear Combination A sum of the form 𝑟1𝑣1 + 𝑟2𝑣2 + … + 𝑟𝑛𝑣𝑛

Linear Independence A set of elements is linearly independent if no non-trivial
linear combination is equal to 0

Generating Set / Spanning A subset of a module is called a generating if it generates
every element of a module, and is called spanning in the context of a vector
space.

Basis a set is a basis if it is both a generating set and every element can be written
as a linear combination uniquely, meaning that it that the set is also linearly-
independent.

☂  Theorem 4.2.1 (Maximality and minimality of basis) :  Let 𝑉  be a vector space
over some field 𝑘 and take 𝑒1, …, 𝑒𝑛 ∈ 𝑉 . The following are equivalent.
1. 𝑒𝑖 for a basis
2. 𝑒𝑖 is spanning but not proper subset is spanning
3. 𝑒𝑖 is independent but no superset is independent

Remark : for modules (1) implies (2) and (3) but we can’t go backwards

☂  Theorem 4.2.2 (Dimension Theorem):  Every basis of a vector space 𝑉  has
the same number of elements.

The proof is to show that spanning sets are never smaller than independent sets.

The theorem is generally true even if the basis is not finite by considering the cardi-
nality of the basis.
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Dimension The dimension of a vector space is the size of any finite basis which is
unique by ☂  Theorem 4.2.2.

If dim(𝑉) = 𝑛 then we can write 𝑉 = 𝑒1𝑘 ⊕ 𝑒2𝑘 + … + ⊕ 𝑒𝑛𝑘.

Rank We say that the rank of a linear map is the dimension of it’s image. This is the
same as the number of linearly independent columns.

§4. 3.  Linear Maps

Linear Map A linear map 𝑉 → 𝑊  which is linear meaning that 𝑓 (𝑎 + 𝑏) = 𝑓 (𝑎) + 𝑓 (𝑏).

A linear map is unique defined by what it does to the basis vectors.

§4. 4.  Subspaces and picking convenient Bases

Let 𝑀 be a left 𝑅 module. A sub-module 𝑁 of 𝑀 is a module 𝑁 such that every element
is also an element of 𝑀. If 𝑀 is a vector space than 𝑁 is a subspace.

Null Space / Kernel The kernel of a map 𝑇 : 𝑉 → 𝑊  is the preimage of 0. It’s a
subspace of 𝑉 .

Nullity Dimension of the Null Space.

Spans Let 𝑉  be a vector space and 𝑣1, 𝑣2, …, 𝑣𝑚 be any vector of 𝑉 . The span of these
vectors is the set

{𝑎1𝑣1 + 𝑎2𝑣2 + … + 𝑎𝑚𝑣𝑚}

Column Space the image of a linear transformation

☂  Theorem 4.4.1 (Rank Nullity Theorem):

dim 𝑉 = dim ker 𝑇 + dim im 𝑇

dim 𝑉 = rank + nullity

§4. 5.  Eigen-things

Eigenvector Let 𝑇 : 𝑉 → 𝑉  and 𝑣 ∈ 𝑉  be a non-zero vector. We say that 𝑣 is an eigen-
vector if 𝑇(𝑣) = 𝜆𝑣 for some 𝜆.

Eigenvector The value of 𝜆 above is called an eigenvalue of 𝑇 . And that 𝑣 is a 𝜆-
eigenvector.

Notice that the set of 𝜆-eigenvectors forms a subspace with the addition of 0.

We have actually that

det(𝑀 − 𝜆) = 0
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§4. 6.  Dual space and trace

Tensor product The tensor product 𝑉 ⊗ 𝑉of 𝑉  and 𝑊  is the set of elements 𝑣 ⊗ 𝑤.
Now the tensor product of two vectors is bi-linear. This means that:
1. (𝑣1 + 𝑣2) ⊗ 𝑤 = 𝑣1 ⊗ 𝑤 + 𝑣2 ⊗ 𝑤
2. 𝑣 ⊗ (𝑤1 + 𝑤2) = 𝑣 ⊗ (𝑤1) + 𝑣 ⊗ (𝑤2)
3. (𝑐 ⋅ 𝑣) ⊗ 𝑤 = 𝑣 ⊗ (𝑐 ⋅ 𝑤)

If 𝑒1, 𝑒2, …, 𝑒𝑛 is a basis of 𝑉  and 𝑓1, 𝑓2, …, 𝑓𝑛 is a basis of 𝑊  then 𝑒𝑗 ⊗ 𝑓𝑗 forms a basis
for 𝑉 ⊗ 𝑊 .

Dual Space the dual space 𝑉 ∨ of 𝑉  (a 𝑘-space) is the space of linear maps from 𝑉  to
𝑘. Addition and multiplication is done pointwise.

The basis for the dual space of 𝑒∨
𝑖  is defined by 𝑒∨

𝑖  mapping 𝑒𝑖 to 1 and everything
else to 0.

𝑉 ∨ ⊕ 𝑊  represents the set of linear maps 𝑉 → 𝑊 . There is a natural bijection between
the two.

So we have that 𝑉 ∨ ⊗ 𝑉 ≅ 𝑉 → 𝑉 . Consider also the evaluation map ev : 𝑉 ∨ × 𝑉  which
collapses each pure tensor 𝑓 ⊗ 𝑣 ↦ 𝑓 (𝑣). This is a linear map as well.

We can now perform the following map:

(𝑉 → 𝑉) ⟶ 𝑉 ∨ ⊗ 𝑉 ⟶ 𝑘

This is why changes in basis keeps the trace the same.

§4. 7.  Determinant

Wedge Product The wedge product looks like the tensor product but with: 𝑣 ∧ 𝑣 = 0
and hence 𝑣 ∧ 𝑤 = −𝑤 ∧ 𝑣.

The determinant arises when we take a bunch of wedge products.

§4. 8.  Inner Product Spaces

Inner Form For real numbers the inner product is defined as a bilinear form written
as ⟨•, •⟩ which is: symmetric and positive definite. i.e. ⟨𝑎, 𝑏⟩ = ⟨𝑏, 𝑎⟩ and ⟨𝑎, 𝑏⟩ ≥ 0.

Inner Form For complex numbers: instead we have conjugate symmetry meaning
that ⟨𝑎, 𝑏⟩ = ⟨𝑏, 𝑎⟩ and sesquilineariarity meaning linear in the first argument
and anti-linear in the second argument. The form is still positive definite.

An inner product space is either a real vector space equipped with a real inner form,
or a complex vector space equipped with a complex inner form.

Norm The norm ‖𝑣‖ is defined as √⟨𝑣, 𝑣⟩ this is why we needed it to be positive
definite.
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🟪  Lemma 4.8.1 (Cauchy Schwartz) :

⟨𝑣, 𝑤⟩ ≤ ‖𝑣‖ ‖𝑤‖

with equality only when 𝑤 and 𝑣 are dependent.

☂  Theorem 4.8.2 (Triangle Inequality) :

‖𝑣‖ + ‖𝑤‖ ≥ ‖𝑣 + 𝑤‖

§4. 9.  Orthogonality

Orthogonal Two non-zero vectors are orthogonal in an inner product space if if their
inner product is 0.

An orthonormal basis is a set of basis vectors which are all orthogonal to one another
and which are all normal, meaning that their norm is 1.

The applications of this are very very lovely, see Fourier Transform notes.

§4. 10.  Duals, Adjoint, and Transpose

Dual of a Map Let 𝑉  and 𝑊  be vector spaces. Suppose 𝑇 : 𝑉 → 𝑊  is a linear map.
Then we actually get a map 𝑇 ∨ : 𝑊 ∨ → 𝑉 ∨.

𝑓 ↦ 𝑓 ⚬𝑇

This is called the dual map.

It converts a map taking in 𝑊  to a map taking in 𝑉  by first mapping 𝑉  to 𝑊 . Shockingly
this is the transpose of a matrix?

This comes about by analysis on the basis vectors and where they get mapped to.

☂  Theorem 4.10.1 : Let 𝑉  be a finite-dimensional real inner product space and
𝑉 ∨ its dual. Then the map 𝑉 → 𝑉 ∨ by

𝑣 ↦ ⟨•, 𝑣⟩ ∈ 𝑉 ∨

is an isomorphism of real vector spaces.
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Adjoint / Conjugate Transpose Let 𝑉  and 𝑊  be finite dimensional inner product
spaces, and let 𝑇 : 𝑉 → 𝑊 . The adjoint of 𝑇 , denoted 𝑇 † : 𝑊 → 𝑉 , is defined as
follows: for every vector 𝑤 ∈ 𝑊 , we let 𝑇 † ∈ 𝑉  be the unique vector with

⟨𝑣, 𝑇 †(𝑤)⟩ = ⟨𝑇(𝑣), 𝑤⟩

We have that 𝑇 † is well defined because ⟨•, 𝑤⟩ is some element 𝑓 ∈ 𝑊 ∨ So ⟨𝑇(•), 𝑤⟩ =
𝑓 (𝑇(•)) = 𝑇 ∨(𝑓 ) ∈ 𝐴∨. So this that not only would 𝑇 † exist but there is only one possible
𝑇 †.

Now we want to see if 𝑇 † is a linear map. We can see pretty clearly that scaling 𝑤
does exactly what we want it to do, this is very good.

We also have that

⟨𝑣, 𝑇 †(𝑎 + 𝑏)⟩ = ⟨𝑇(𝑣), 𝑎 + 𝑏⟩
= ⟨𝑇(𝑣), 𝑎⟩ + ⟨𝑇(𝑣), 𝑏⟩
= ⟨𝑣, 𝑇 †(𝑎)⟩ + ⟨𝑣, 𝑇 †(𝑏)⟩
= ⟨𝑣, 𝑇 †(𝑎) + 𝑇 †(𝑏)⟩

and since there is only one value of 𝑇†(𝑎 + 𝑏) is must be linear.

☂  Theorem 4.10.2 (Adjoints are conjugate transposes) :  Fix a orthonormal basis
of a finite-dimensional inner product space 𝑉 . Let 𝑇 : 𝑉 → 𝑉  be a linear map.
If we write 𝑇  as a matrix in this basis then matrix 𝑇 † in the same basis is the
conjugate transpose of the matrix 𝑇 ; that is we transpose the matrix and take
the complex conjugate.

§4. 11.  Normal Maps

Normal we say that a linear map 𝑇  is normal if 𝑇𝑇 † = 𝑇 †𝑇 .

We say that 𝑇  is Hermitian if 𝑇 = 𝑇 †. This is also called symmetric.

☂  Theorem 4.11.1 :  𝑇 : 𝑉 → 𝑉  is normal if and only if one can pick an ortho-
normal basis of eigenvectors

☂  Theorem 4.11.2 :  A hermitian matrix is normal and has all real eigenvalues.
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