
IMO 2023 Solutions
Kaguya-san, Miyuki wa sukidesu ka?

Jay Zhao

Problem 1 :  Determine all composite integers 𝑛 > 1 that satisfy the following
property: if 𝑑1, 𝑑2, …, 𝑑𝑘 are all the positive divisors of 𝑛 with 1 = 𝑑1 < 𝑑2 < … <
𝑑𝑘 = 𝑛, then 𝑑𝑖 divides 𝑑𝑖+1 + 𝑑𝑖+2 for every 1 ≤ 𝑖 ≤ 𝑘 − 2.

Notice that it must be that

𝑑1, 𝑑2, …, 𝑑𝑘 = 𝑛
𝑑𝑘

, 𝑛
𝑑𝑘−1

, …, 𝑛
𝑑1

Since 𝑛 is a composite number it must have at least one prime divisor, let 𝑝 be the
smallest such prime divisor and let 𝑞 be the second smallest prime divisor of 𝑛.

𝑑2 must be the smallest prime divisor of 𝑛, as otherwise 𝑑2 is composite and hence a
prime divisor of 𝑑2 would be a smaller divisor of 𝑛, this is a contradiction.

𝑑2 = 𝑝

We claim that 𝑑𝑖 = 𝑝𝑖−1 for all 1 ≤ 𝑖 ≤ 𝑘. We will do this by strong induction. We have
already proven the base case.

Now if our claim is true for 𝑖 and 𝑖 − 1 then 𝑑𝑖 = 𝑝𝑖−1 and 𝑑𝑖−1 = 𝑝𝑖−2. If 𝑑𝑖+1 is
composite then it must not have any prime divisors other than 𝑝 as that would imply
there is a a smaller divisor than 𝑑𝑖+1 which is not one of 𝑑𝑗 for 1 ≤ 𝑗 ≤ 𝑖 this means
that 𝑑𝑖+1 is a power of 𝑝 and hence it is 𝑝𝑖 as desired.

So we only need to consider when 𝑑𝑖+1 is a prime other than 𝑝. We then have that

𝑑𝑘+2−𝑖 = 𝑛
𝑝𝑖−2 , 𝑑𝑘+1−𝑖 = 𝑛

𝑝𝑖−1 ,  and, 𝑑𝑘−𝑖 = 𝑛
𝑞

Where 𝑞 is some prime number larger than 𝑝. Which means we then have that
𝑛
𝑞

∣ 𝑛
𝑝𝑖−1 + 𝑛

𝑝𝑖−2

𝑝𝑖−1 ∣ 𝑞 + 𝑝𝑞 , 𝑖 ≥ 2

𝑝 ∣ 𝑞 + 𝑝𝑞

and hence 𝑝 ∣ 𝑞 which is a contradiction. So our 𝑑𝑖+1 must be 𝑝𝑖. Claim is true by POFMI.

this means that 𝑑𝑘 is a power of 𝑝 and hence 𝑛 is a non trivial power of 𝑝. Indeed all
prime powers satisfy the conditions given in the problem because

𝑝𝑖−1 ∣ 𝑝𝑖 + 𝑝𝑖+1
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Problem 2 :  Let 𝐴𝐵𝐶 be an acute-angled triangle with 𝐴𝐵 < 𝐴𝐶. Let Ω be the
circumcircle of 𝐴𝐵𝐶. Let 𝑆 be the midpoint of the arc 𝐶𝐵 of Ω containing 𝐴.
The perpendicular from 𝐴 to 𝐵𝐶 meets 𝐵𝑆 at 𝐷 and meets Ω again at 𝐸 ≠ 𝐴.
The line through 𝐷 parallel to 𝐵𝐶 meets line 𝐵𝐸 at 𝐿. Denote the circumcircle
of triangle 𝐵𝐷𝐿 by 𝜔. Let 𝜔 meet Ω again at 𝑃 ≠ 𝐵. Prove that the line tangent
to 𝜔 at 𝑃  meets line 𝐵𝑆 on the internal angle bisector of ∠𝐵𝐴𝐶

Let 𝑀  be the midpoint of the arc ⏜𝐴𝐶  not containing 𝐴. We have that 𝑆𝑀  is diameter
of Ω. Let 𝑇  be the point diametrically opposed to 𝐴 with respect to the circle Ω.

Notice that 𝐸𝑇  is parallel to 𝐵𝐶 because ∠𝐴𝐸𝑇 = 90° and 𝐸𝑇 ⟂ 𝐴𝐸 and 𝐵𝐶 ⟂ 𝐴𝐸.
So we have that 𝑇 , 𝐷, 𝑃  is collinear by Reim’s theorem.

Next we prove that the tangent to 𝜔 at 𝐿 is parallel to 𝑆𝐸, this is by angle chasing
with the green angles shown below.

We have that 𝑆, 𝑃  and 𝐿 are collinear, again, by Reim’s theorem.

∠𝐴𝐵𝐷 = ∠𝐴𝐸𝑆 = ∠𝐸𝐴𝑀
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Hence 𝐴𝑀  is tangent to the circle (𝐴𝐷𝐵) at 𝐴. Notice that 𝐷𝐵 is the radical axis of
𝜔 and (𝐴𝐷𝐵)

Now we let 𝑋 be the intersection of 𝑆𝐵 and 𝐴𝐼 .

Notice also that 𝐴𝑋 is parallel to 𝑆𝑇  because both are perpendicular to A S. We have
that (𝐴𝑆𝑇𝑀) forms a rectangle.

It is sufficient now to prove that 𝑋𝐴 = 𝑋𝑃  as that implies that 𝑋𝑃  is the tangent of
𝜔.

This is somehow the hard part, this is like fucking impossible, Evan Chen used projective
geometry 😭. I’ll do a terrible proof, we coord-bash. Yay!

Remark :  Isos with right angle = midpoint, midpoint + parallel line = projective.
Besides that the problem wasn’t very difficult.

I need to get rest.

3 ⁄ 9



IMO 2023 Solutions

Oh yeah, I did manage to reduce the problem down to something that seems trivial,
when you get this and you can’t solve it, try taking a step back.

Problem 3 : For each integer 𝑘 ⩾ 2, determine all infinite sequences of positive
integers 𝑎1, 𝑎2, … for which there exists a polynomial 𝑃  of the form 𝑃(𝑥) = 𝑥𝑘 +
𝑐𝑘−1𝑥𝑘−1 + ⋯𝑐1𝑥 + 𝑐0, where 𝑐0, 𝑐1, …, 𝑐𝑘−1 are non-negative integers, such that

𝑃(𝑎𝑛) = 𝑎𝑛+1𝑎𝑛+2⋯𝑎𝑛+𝑘

for every integer 𝑛 ⩾ 1.

Note that the polynomial 𝑃  is strictly increasing over the natural numbers.

Now either the sequence is strictly increasing or it is constant. This is because if 𝑎𝑛−1 >
𝑎𝑛 then we have that 𝑎𝑛+𝑘 = 𝑃(𝑛)

𝑃(𝑎𝑛+1) = 𝑎𝑛. So 𝑎𝑛+𝑘 < 𝑎𝑛 < 𝑎𝑛−1. Hence there is some
index 𝑙 such that 𝑎𝑛 > 𝑎𝑙−1 > 𝑎𝑙. So we can do infinite descent which is bad.

This is a lower bound on 𝑎𝑛+1, let’s see if we can find an upper bound.

Notice that in the equality case we have that 𝑎𝑛+𝑘 = 𝑎𝑛 for all 𝑛. So we will eventually
get a pair of decreasing consecutive terms unless all the terms are constant.

In the constant case it must be that 𝑃(𝑥) = 𝑥𝑘 for some 𝑥 which is only the case if all
the other terms are 0. So 𝑃(𝑥) ≡ 𝑥𝑘.

Notice that there is some 𝑄(𝑥) ≡ (𝑥 + 𝑑)(𝑥 + 2𝑑)⋯(𝑥 + 𝑘𝑑) such that all the terms of
𝑃(𝑥) are less than the terms of 𝑄(𝑥) besides 𝑄(𝑥). So we have that if 𝑎𝑛+1 > 𝑎𝑛 + 𝑘𝑑
then we have that 𝑎𝑛+1𝑎𝑛+2⋯𝑎𝑛+𝑘 ≥ (𝑎𝑛 + 𝑑)(𝑎𝑛 + 2𝑑)⋯(𝑎𝑛 + 𝑘𝑑) > 𝑃(𝑎𝑛).

So the relative difference adjacent terms is bounded between 1 and 𝐶 for some constant
𝐶. (This is inclusive).

Oh my god, this means that eventually the relative differences repeat infinitely many
times, but then this means we have exactly

𝑃(𝑥) = (𝑥 + 𝑑1)(𝑥 + 𝑑2)(𝑥 + 𝑑3)…(𝑥 + 𝑑𝑘)

for infinitely many values of 𝑥 and thus

𝑃(𝑥) ≡ (𝑥 + 𝑑1)(𝑥 + 𝑑2)(𝑥 + 𝑑3)…(𝑥 + 𝑑𝑘)

Holy tuple pigeon hole principle. Anyway, this seems like very good progress.

But notice that for the element right after this sequence, we can pigeon hole again, then
the next 𝑘 differences are all the same, this is only true if all the differences are the
same. Because we’d have 𝑑2 − 𝑑1 = 𝑑1. And so on.

Remark :  Wow doing this problem was actually super insightful, the idea of tuple
pigeonhole appeared in 2024 IMO P3, I hope it comes up again because wow it’s really
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cool, but it’s unlikely >:(. The upper bound is very easy to prove, in fact it was like
the first idea I had, the lower bound then should come naturally.

What’s funny is that it’s very easy to get a lower bound that could be decreasing, and
that is good progress too.

The idea reducing a sequence down is very natural once you have that a single equality
makes the sequence constant. This is very nice.

Sadly, I had to cheat for the lower bound, but it should come very naturally. I guess
the idea is that if you have an upper bound, you should be brave enough to come up
with a lower bound.

Also note that in real mathematics, just having a result is really useful, even if it is
not tight.
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Problem 4 :

Let 𝑥1, 𝑥2, …, 𝑥2023 be pairwise different positive real numbers such that

𝑎𝑛 = √(𝑥1 + 𝑥2 + … + 𝑥𝑛)( 1
𝑥1

+ 1
𝑥2

+ … + 1
𝑥𝑛

)

is an integer for every 𝑛 = 1, 2, …, 2023. Prove that 𝑎2023 ≥ 3034.

So we have that 𝑎1 is 1 and 𝑎2 is at least 3. The first is trivial, the second is because
𝑥1
𝑥1

+ 𝑥2
𝑥2

+ 𝑥1
𝑥2

+ 𝑥2
𝑥1

> 4

as we do not have equality.

Then we have that 𝑎𝑛+1 ≥ 𝑎𝑛. The reason for this is that

𝑎2
𝑛+1 = 𝑎2

𝑛 +
𝑥𝑛+1
𝑥𝑛+1

+ … > 𝑎2
𝑛

We claim now that 𝑎2𝑛 > 3𝑛. To do this it is sufficient to prove that we cannot have

𝑎𝑛+1 > 𝑎𝑛−1 + 3

This then finishes off the problem nicely because 𝑎2022 ≥ 3033 and then 22023 ≥ 3034.

𝑎2
𝑛+1 = 𝑎2

𝑛−1 + 𝑥𝑛
𝑥𝑛

+
𝑥𝑛+1
𝑥𝑛+1

+ 𝑥𝑛
𝑥𝑛+1

+
𝑥𝑛+1
𝑥𝑛

+(𝑥𝑛 + 𝑥𝑛+1)(
1
𝑥1

+ ⋯ + 1
𝑥𝑛−1

)

+( 1
𝑥𝑛

+ 1
𝑥𝑛+1

)(𝑥1 + … + 𝑥𝑛−1)

Then we apply AM-GM on 𝑥𝑛
𝑥𝑛+1

+ 𝑥𝑛+1
𝑥𝑛

> 2, and again, apply AM-GM on

𝑥𝑖(
1
𝑥1

+ … + 1
𝑥𝑛−1

) + 1
𝑥𝑖

(𝑥1 + … + 𝑥𝑛−1) ≥ 2
√

9𝑘2 = 6𝑘

𝑎2
𝑛+1 > 9𝑘2 + 2 + 2 + 12𝑘 = (3𝑘 + 2)2

the strict inequality comes from the unequalness of 𝑥𝑛 and 𝑥𝑛+1.
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Problem 5 :  Let 𝑛 be a positive integer. A Japanese Triangle consists of 1 + 2 +
⋯ + 𝑛 circles arranged in an equilateral triangular shape such that for each 𝑖 =
1, 2, …, 𝑛, the 𝑖th row contains exactly 𝑖 circle, exactly one of which is coloured
red. A ninja path in a Japanese triangle is a sequence of 𝑛 circles obtained by
starting in the top row, then repeatedly going from a circle to one of the two
circles immediately below it and finishing in the bottom row.

The answer is 𝑘 = ⌊log2(𝑛)⌋ + 1. The construction is the following pattern.

The idea behind the construction is for each “layer” we color a circle red so that it just
just barely dodge the “cone” of the previous circles.

It works because we can only get one of each shade of red circle.

Now let 𝑚(𝑖, 𝑗) denote the maximum possible number of red circles sub ninja path
starting at the top and ending at the 𝑖th row at the 𝑗th circle.

Let 𝑟(𝑖, 𝑗) be 1 if the 𝑗th circle in the 𝑖th row has a red circle in it, let it be 0 otherwise.

We have that 𝑚(𝑖, 𝑗) = max(𝑚(𝑖 − 1, 𝑗), 𝑚(𝑚 − 𝑖, 𝑗 − 1)) + 𝑟(𝑖, 𝑗)
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We claim that the sum of 𝑚(𝑖, 𝑗) in row 𝑖 = 2𝑘 − 1 is 𝑘. This is true for 𝑘 = 1. We now
prove this inductively.

The main claim is that the sum over row 2𝑘 + 𝑛 is at least 𝑘(2𝑘 + 𝑛) + 2𝑛 − 1.

This is because each row adds a single extra red circle, and also there is always at least
one circle from the row above which is 𝑘 + 1.

This finished by induction.

Remark : I actually head solved this problem while falling asleep last night, the function
is very natural.
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Problem 6 : Let 𝐴𝐵𝐶 be an equilateral triangle. Let 𝐴1, 𝐵1, 𝐶1 be interior points
𝐴𝐵𝐶 such that 𝐵𝐴1 = 𝐴1𝐶, 𝐶𝐵1 = 𝐵1𝐴, 𝐴𝐶1 = 𝐶1𝐵, and

∠𝐵𝐴1𝐶 + ∠𝐶𝐵1𝐴 + ∠𝐴𝐶1𝐵 = 480°.

Let 𝐴2 = 𝐵𝐶1 ∩ 𝐶𝐵1, 𝐵2 = 𝐶𝐴1 ∩ 𝐴𝐶1, 𝐶2 = 𝐴𝐵1 ∩ 𝐵𝐴1. Prove that if triangle
𝐴1𝐵1𝐶1 is scalene, then the circumcircles of triangle 𝐴𝐴1𝐴2, 𝐵𝐵1𝐵2 and 𝐶𝐶1𝐶2
all pass through two common points.

Remark :  Monster Geo, Wacky Condition.

The problem is the equivalent to proving that the three circles are coaxial, this can be
done by showing they have a common radical axis.

Maybe we can find two points such that they have equal power with respect to all three
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