

Mock 1

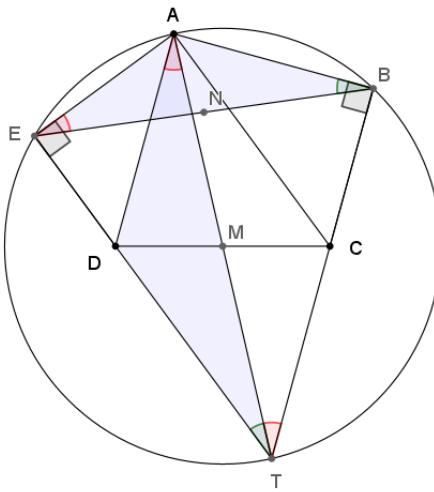
no cheeky comment this time

Jay Zhao

Problem 1: Let $ABCDE$ be a convex pentagon such that $\angle ABC = \angle AED = 90^\circ$. Suppose that the midpoint of CD is the circumcentre of triangle ABE . Let O be the circumcentre of triangle ACD .

Prove that line AO passes through the midpoint of segment BE .

Let ED and BC intersect at point T , by Thales theorem, it must be the case that AT is the diameter of the circumcircle of triangle ABE . Hence A , M and T are collinear.



Claim 1: $\triangle ADT \sim \triangle EAB$

$\angle ATD = \angle ABE$, by cyclic quads

$\angle DAT = \angle CTA = \angle BEA$, parallel lines + cyclic quad

Then our claim is true by AA.

Let N be the midpoint of segment BE .

Claim 2: $\angle DAN = 90^\circ - \angle ACD$

$$\angle DAN = \angle EAN - \angle EAD$$

By similar triangles $\angle EAN = \angle ADM$. $\angle EAD = 90^\circ - \angle EDA = 90^\circ - \angle DAC$. Hence

$$\angle DAN = \angle ADN - 90^\circ + \angle DAC = 180^\circ - \angle ADC - 90^\circ = 90^\circ - \angle ACD$$

Claim 3: $\angle DAO = 90^\circ - \angle ACD$.

Let H be the orthocenter of triangle ACD , we have that $\angle CAH = 90^\circ - \angle ACD$. Since H and O are isogonal conjugates with respect to triangle ACD it must be that also,

$$\angle DAO = 90^\circ - \angle ACD$$

Claim 2 and **Claim 3** together imply that A , N and O .

Q.E.D.

Problem 2: Let $n > 1$ be an integer. Determine the smallest positive integer d for which there exists $2n$ positive integers $a_1, a_2, \dots, a_n, b_1, b_2, \dots, b_n$ such that the $n + 1$ products

$$\begin{aligned} a_1 a_2 a_3 \dots a_n, \\ b_1 a_2 a_3 \dots a_n, \\ b_1 b_2 a_3 \dots a_n, \\ \vdots \\ b_1 b_2 b_3 \dots b_n, \end{aligned}$$

form, in that order, a strictly increasing arithmetic progression with common difference d .

Let d be the smallest possible d for which there existed such a sequence. Assume that out of all the possible pairs of sequences (a_i) and (b_i) that the two sequences a_1, a_2, \dots, a_n and b_1, b_2, \dots, b_n were such that $a_1, a_2, a_3 \dots a_n$ has the smallest possible value. Such a minimal sequence must exist because each of a_i is a positive integer and so the set of possible values of $a_1 a_2 a_3 \dots a_n$ is well ordered.

Claim 1: a_i and b_i must be coprime for all $1 \leq i \leq n$.

Assume otherwise, then let $g \geq 1$ be the greatest common divisor of a_i and b_i for some i . Consider the pair of sequences $a_1, \dots, a_{i-1}, \frac{a_i}{g}, a_{i+1}, a_n$ and $b_1, \dots, b_{i-1}, \frac{b_i}{g}, b_{i+1}, \dots, b_n$. The $n + 1$ products formed by this new pair of sequences is equal to the corresponding $n + 1$ products of the original sequences, just that each product is now smaller by a factor of g . This contradicts the minimality of our two original sequences. So our claim is true.

Now let $a := a_1 a_2 a_3 \dots a_n$.

Claim 2: $\frac{b_i}{a_i} = \frac{a+id}{a+(i-1)d}$.

We know that $b_1 \dots b_{i-1} a_i a_{i+1} \dots a_n = a + (i-1)d$ and $b_1 \dots b_i a_{i+1} \dots a_n = a + (id)$. Dividing the latter by the former gives the desired result.

Claim 3: $a_i = \frac{a+(i-1)d}{(a,d)}$ and $b_i = \frac{a+id}{(a,d)}$ where (a,d) . Where $(a,d) = \gcd(a,d)$.

$a_i = \frac{a+(i-1)d}{g}$ where g is the greatest common divisor of $a + (i-1)d$ and $a + id$. But notice that by Euclidean algorithm, the greatest common divisor of those two is the greatest common divisor is (a,d) .

So we have that a_i forms an arithmetic progression and b_i forms an arithmetic progression where $a_{i+1} = b_i$.

So we have that $d = (b_1 - a_1)(a_2 a_3 \dots a_n)$ where $b_1 - a_1$ is at least 1 as $b_1 > a_1$ and $a_2 a_3 \dots a_n$ is at least $2 \times 3 \times \dots \times n = n!$.

$d = n!$ and this is achieved with the sequence $a_i = i$ and $b_i = i + 1$.

Q.E.D.

Problem 3: Ross has 2023 treasure chests, all of which are unlocked and empty at first. Each day, Ross adds a new gem to one of the unlocked chests of his choice, and afterwards, a fairy acts according to the following rules:

- if more than one chests unlocked, it locks one of them, order
- if there is only one unlocked chest, it unlocks all the chest.

Given that this process goes on forever, prove that there is a constant C with the following property: Ross can ensure that the difference between the numbers of gems in any two chests never exceeds C , regardless of how the fairy chooses the chests to lock.

Problem 4: Let $m \geq 2$ be an integer, A a finite set of integers (not necessarily positive) and B_1, B_2, \dots