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With two integer d and n we say that d is a divisor of n if there exists some integer a such that n = da. We
can also say that d “divides” n. Which we write using the following notation:

d | n

Where the middle bar is pronounced “divides”

We have that if d | n then d | m ⇐⇒ d | n+m a corollary of this is that if d | n then d ∤ m ⇐⇒ d ∤ n+m.
So for example 9 is a multiple of 3 and 4 is not a multiple of 3. So 9+ 4 = 13 is not a multiple of 3. And 91
is a multiple of 7 and 7 is a multiple of 7. So 98 is also a multiple of 7.

We also have that d | n implies that d | an for any integer a.

We also also have that if d | n and n is not 0 then |n| ≥ |d|. Since n = ad where a is some integer other than
0, this means that a ≥ 1 or a ≤ 1 and thus |a| ≥ 1. This fact is sometimes used in number theory problems.

Also note that if d | nm and d ∤ n then it must be the case that d | n

Example 1. Prove that if a and b are integers then 7 | 10a+ b if and only if 7 | a− 2b is divisible by 7

Since this is an if and only if problem we have to prove that

7 | 10a+ b =⇒ 7 | a− 2b

and also that
7 | a− 2b =⇒ 7 | 10a = b

I will only prove one direction and leave proving the other direction as an exercise.

7 | 10a+ b =⇒ 7 | 50a+ 5b =⇒ 7 | 49a+ 7b+ a− 2b =⇒ 7 | a− 2b

Now we define the following equivalence relationship. a and b are equivalent ”mod” m if and only if m | a−b

a ≡ b mod m ⇐⇒ m | a− b

We use the ≡ sign because a and b are not literally equal in value, just that they are “equivalent” under our
definition.

What this “equivalence” means is that if a ≡ b mod m. For all integers c

a+ c ≡ b+ c mod m and ac ≡ bc mod m
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It means that if x and y are equivalent then if we replace x by y in any arithmetic expression then the two
results are also “equivalent”.

So for example if we wanted to find the last digit of the 38734 we simply have to notice that the if two
numbers have the same last digit then they are equivalent mod 10 because if two number have the same
last digit they can only differ in digits past the tens digit, and so the difference must be a multiple of 10, so
under mod 10 we can say that

38734 ≡ 734 ≡ 732 · 72 ≡ 24018 · 72 ≡ 18 · 49 ≡ 1 · 9 ≡ 9

So the since the two numbers 38734 and 9 are equivalent mod 10 then their last digits are also the same.

We can also use this to derive a divisibility test for multiples of 9. Notice that

10 . . . 00 ≡ 9 . . . 99 + 1 ≡ 9 · 1 . . . 11 + 1 ≡ 9a+ 1 ≡ 1

A number n = a+ 10b+ 100c+ . . . is divisible by 9 if and only

9 | n ⇐⇒ 9 | n− 0 ⇐⇒ n ≡ 0 mod 9

We then know that each of 10, 100, 1000, . . . are 1 | 9. This means that n ≡ a+ b+ c+ . . . mod 9. And so
n is divisible by 9 if and only if the sum of it’s digits is also divisible by 9

The only caveat is that we can only replaced x with y when x ≡ y in expressions using only +, − and ×.
So for example while we can do 24 ≡ 94 mod 7 we cannot do 24 ≡ 211 mod 7 unless we have a really good
justification for why we can do it. We cannot do division. If we had a + c ≡ b + c then we can say a ≡ b
However if we had ca ≡ cb we cannot then say that a ≡ b as we are dividing both sides by c unless we had
really good justification for why we actually can do it.

For example 2 · 1 ≡ 2 · 2 mod 2 but 1 ̸≡ 2 mod 4.

Example 2. Find all solutions to x2 + y2 = 2025 where x and y are positive integers. Consider looking at
this equation mod 3. That means that

x2 + y2 ≡ 0 mod 3

since 2025 is divisible by 3

x is either equivalent to 0, 1 or 2 and this gives us that x ≡ 0, 1 and 1 respectively. Similarly y2 is equivalent
to either 0 or 1.

Since x2 + y2 ≡ 0 mod 3 we must have that both x and y are equivalent to 0 mod 3. There exists x1 = x
3

and y1 = y
3 for which

9x2
1 + 9y21 = 2025

x2
1 + y21 = 225

Again 225 ≡ 0 mod 3 so using the same logic as before, x1 and y1 are both multiple of 3 Now if we have
x2 = x1

3 and y2 = x1

3 then we know that

x2
2 + y22 = 52

for which we can manually verify the only solutions are (x2, y2) = (3, 4), (4, 3). We know also that x = 3x1 =
9x2 and y = 3y1 = 9y2. Hence (x, y) = (27, 36), (36, 27)
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Taking mod 3 and mod 4 tends to be useful when dealing with squares because x2 = {0, 1} mod 3 and
x2 = {0, 1} mod 4

Now we will do one last example problem

Example 3. Find all positive integers x and y such that

3x − 2y = 1

First we notice that (x, y) = (1, 1) is clearly a solution. So we only deal with the case when y ̸= 1 or in other
words when y ≥ 2

This means that 4 | 2y, then taking mod 4 we know that

3x ≡ 1 mod 4

if x is odd then x = 2k + 1 and so

3x ≡ 32k+1 ≡ 9k · 3 ≡ 1k · 3 ≡ 3 ̸≡ 1 mod 4

So x cannot be odd and instead x must be even.

So lets write x = 2k
32k − 2y = 1

which means that
32k − 1 = 2y

We can now use difference of squares to obtain that:

(3k − 1)(3k + 1) = 2y

Notice that 2y has no divisors besides other powers of 2. Or in other words it has no prime divisor other
that 2. This means that it must be the case that 3k − 1 and 3k + 1 have no prime divisors other that 2 and
must themselves be powers of 2.

We cannot have that both 3k − 1 and 3k +1 are divisible by 4 as that would imply that 4 | 3k +1− (3k − 1)
and 4 | 2 which is absurd.

So one of 3k − 1 and 3k + 1 is 2 as 3k − 1 and 3k + 1 are both even and 2 is the only even power of 2 which
is not divisible by 4.

This means that either 3k + 1 = 2 which can’t be true as 3k + 1 ≥ 3 + 1

Or we have that 3k − 1 = 2 which means 3k = 3 and thus k = 1. This means that x = 2 then

32 − 2y = 1

and thus
2y = 9− 1 = 8

and then y = 3. Which gives us the solution (x, y) = (2, 3). We have also proved that these are all the
solutions.
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